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3 German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany

Abstract. Wearable inertial measurement units (IMU) enable large-
scale multicenter studies of everyday gait analysis in patients with rare
neurodegenerative diseases such as cerebellar ataxia. To date, the quan-
tity of sensors used in such studies has involved a trade-off between data
quality and clinical feasibility. Here, we apply machine learning tech-
niques to potentially reduce the number of sensors required for real-life
gait analysis from three sensors to a single sensor on the hip. We trained
1D-CNNs on constrained walking data from individuals with cerebellar
ataxia and healthy controls to generate synthetic foot data and pre-
dict gait features from a single sensor and tested them in free walking
conditions, including the everyday life of unseen subjects. We compare
14 stride-based gait features (e.g. stride length) with three sensors (two
on the feet and one on the hip) with our approach estimating the same
features based on raw IMU-data from a single sensor placed on the hip.
Leveraging layer-wise relevance propagation (LRP) and transfer learning,
we determine driving elements of the input signals to predict individu-
als’ gait features. Our approach achieved a relative error (< 5%) similar
to the state of the art three-sensor approach. Thus, machine learning-
assisted one-sensor systems can reduce the complexity and cost of gait
analysis in upcoming clinical studies while maintaining clinical meaning-
ful effect sizes.

Keywords: Clinical gait analysis · time-series · CNN · explainability ·
cerebellar ataxia
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1 Introduction

In a wide variety of movement disorders, gait emerges as a cardinal symptom,
which is often caused by progressive neurodegeneration. Accurate gait analysis
in real life is crucial for the evaluation of upcoming treatments in such disorders,
extracting disease-specific gait features like highly variable stride lengths and
increased upper body sway [3]. Gait analysis conducted via multiple IMU-sensors
on different parts of the body accurately extracts sensitive gait features but lacks
clinical feasibility as it is costly and inconvenient for patients to use on a daily
basis. While one-sensor systems deliver reliable information for average values of
gait speed or stride length, for measures of spatio-temporal variability they have
been demonstrated to be less reliable and less sensitive than their three-sensor
counterparts, including an additional sensor on each foot [5].

1.1 Motivation

Hereditary cerebellar ataxia is a neurodegenerative movement disorder that
causes progressive difficulty with walking and balance, resulting in decreased
quality of life [14]. Spatio-temporal gait features extracted from wearable IMU-
sensors indicate higher effect sizes for disease severity of ataxic patients in real-
life in comparison to constrained walking trials [12], [23]. In particular, stride
length variability has proved to be a strong indicator of whether and how fast the
disease is progressing [11]. Gait features obtained with wearable IMU-sensors are
thus promising response markers and can be used to validate future therapeutic
approaches, as well as to enable online therapies [11]. Currently, no treatment for
cerebellar ataxia exists, but gene therapies tested in mice are yielding promising
results [6]. As cerebellar ataxia is a rare disease, validation of potential treat-
ments often necessitates multicenter studies to ensure a sufficiently large number
of subjects [22]. Reliable and feasible one-sensor systems are therefore particu-
larly promising for upcoming therapy studies with real-life assessments, as these
optimize patient convenience and reduce costs.

1.2 Objective

We hypothesize that machine learning can be used to predict various gait features
represented only in hip data with high accuracy. Previous IMU-based machine
learning approaches are limited to classification problems [13], are often based
on constrained walking scenarios, [10] or clinically unfeasible sensor set-ups with
17 sensors [15]. Previously, 1D-CNNs have been used to predict five parameters
simultaneously, based on a constrained walking dataset consisting of 1185 steps
from 99 subjects, 54% of whom were diagnosed with a gait disorder or tendency
to fall [8]. By contrast, we present an approach using 1D-CNN machine learning
to reduce the number of sensors required for real-life gait analysis in cerebellar
ataxia to one hip sensor only.



Title Suppressed Due to Excessive Length 3

The aim of this study is to predict ataxic-sensitive gait features with small rel-
ative errors (< 5%) using 1D-CNN-assisted one-sensor systems in everyday life.
For an application in a clinical context it is crucial to find traceable mechanisms
in gait feature prediction, which are revealed by explainability methods in the
three- and one-sensor systems.
In this work, three approaches will be compared to investigate the impact of foot
data on various stride-based gait features in subjects’ everyday life:
(i) Using the complete set of three sensors (3S) resulting in 27 channels of IMU-
data. (ii) Using the hip data and synthetic foot data (1S+2Ŝ) resulting in 9
channels of orignal IMU-data + 18 channels of generated IMU-data. (iii) Only
using the hip sensor (1S), resulting in 9 input channels of IMU-data. The differ-
ent inputs are utilized in a 1D-CNN parameter prediction network (PN) of 14
stride-based gait features [2] (s. fig. 1): 7 spatio-temporal features (stride length,
gait speed, stride duration, circumduction, lateral deviation, foot elevation and
double support fraction), 4 foot angles (pitch at heel strike/midswing/toe off
and toe out) and 3 upper body sway measures (range of motion in sagittal,
transverse and coronal plane). In approach (ii) a second encoder-decoder based
network serves as a foot data generation network (FN), aiming to generate foot
sensor data from hip sensor data, which can be used as additional input for PN
in a one-sensor scenario. Finally, we investigate LRP-activation patterns for re-
gression models [17] to identify the relevant input channels for each gait feature.
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Fig. 1: Three approaches to predict 14 gait features from IMU-data using pa-
rameter prediction networks (PN) with different number of input channels k:
Stride-based data from all three worn sensors (3S), one hip sensor (1S) and one
hip sensor with synthetic foot data using a foot signal prediction network (FN)
(1S+2Ŝ). Gait features from: [2].
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2 Methods

The dataset used here to train the two neural networks PN and FN is described
in terms of data collection and clinically relevant details in [12] and [23].

2.1 Dataset

Gait data was collected from 47 healthy controls (HCs) and 59 patients with
cerebellar ataxia (PATs) at a baseline, 1-year and eventually 2-years follow-up
assessment by using three Opal sensors (APDM, v2), placed at the lumbar region
and on both shoes. Each Opal sensor included triaxial accelerometers, gyroscopes
and magnetometers with a fps = 128. Stride-based gait features were extracted
from raw data using Mobility Lab (APDM, v2), validated in [19]. Each of the 106
subjects completed a constrained 50 m straight walk (NW). A subset of subjects
(n = 87) participated in a 10 minute observed free walk (OW) in- and outside
the clinics including stairs and busy hallways. A subset of OW-subjects (n = 64)
completed several hours of unsupervised home recordings reflecting individual
daily living (DW). All sets contained an equal proportion of HCs and PATs.
Preprocessing of the raw data included segmenting the gait sequences into sep-
arate strides based on one-sided heel strike events (HS), removing exceptionally
short or long strides, and inserting the IMU-data into channels with a fixed size
of 170 data points (1.33 seconds). If a stride was shorter, it was inserted in the
middle of the channel and filled up with original sensor data of the previous and
next stride, resulting in a total of 10,715, 61,877, and 427,519 strides per gait
task, respectively.

2.2 Network architectures

Three PNs with different input channels k were trained to predict 14 gait features
from different sensor-setups: using raw data from the hip sensor only (1S, k=9),
the hip plus FN-generated feet data (1S+2Ŝ, k=9+18) in comparison to the
complete set of all three sensors (3S, k=27). Using 1D convolutions layers, the
shifting of the kernels is done on the time dimension with a step size of one.
The PN consisted of three convolutional layers, with a max-pooling layer with
a size of 2 following each layer and three fully connected layers (s. fig. 2 (a)).
The convolutional layers contained N1 = 32, N2 = 64 and N3 = 128 kernels
of size L1 = 30, L2 = 15 and L3 = 7. The fully connected layer consisted of
N4 = 4096, N5 = 2048 and N6 = 1024 neurons and a corresponding number
of bias values. The output layer of the network contained Nout = 14 neurons,
corresponding to the 14 gait features. The FN was composed of an encoder
and a decoder (s. fig. 2 (b)). The encoder consisted of three convolutional layers,
each followed by a max-pooling layer with window size two and four dense layers,
resulting inNencoded = 750. The decoder contained four dense layers. The neuron
number of the readout layer Nout was 170 · 9 · 2 = 3060 neurons and a matching
number of bias values.
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Fig. 2: Architectures of the 1D-CNN networks for (a) parameter prediction (PN)
and (b) foot signal prediction (FN), modified from [8].

2.3 Training

In the supervised training phase of all three PNs, we used 14 stride based gait
features previously determined by a validated three-sensors algorithm as ground
truth [19]. We selected a training scheme simulating a clinical trial: A base
network was trained on a larger set of constrained walking data, and is then re-
trained with limited free walking data from new patients and tested on everyday
data of the respective patients. Firstly, a 70:30 split of NW data set was done
for training a base net for 1500 epochs. Next, the free walking data (OW) of
unseen subjects was used as retraining data for 750 epochs. Finally, 1% of the
DW data of the test subjects was utilized in a second retraining for 1500 epochs
to explore further improvements.
For the PN network the learning rate α was 5 · 10−6 with normal distribution
(µ = 0, σ = 1) as weight initialization. Adam optimization algorithm [16] was
performed with β1 = 0.9, β2 = 0.99, and ϵ = 10−8 and a mini-batch size of 64.
To prevent overfitting, the network was trained with a weight decay of 10−5. To
facilitate the training of the networks, all outputs were normalized between 0
and 1.
For the FN network the learning rate α was changed to 8 · 10−7 with He ini-
tialization [9]. Additionally, gradient clipping was used with a value of 1 [21].
Soft-DTW from [4] and implementation of [18] was used as the loss function to
quantify how similar the predicted foot data was to the original one [20].
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2.4 Layerwise Relevance Propagation

For a deeper analysis of the networks of this work, LRP was utilized, which
described on the basis of relevance scores what kind of influence the respective
sensor input had on the prediction. LRP was implemented using the ’Epsilon-
Plus’ function of the zennit framework [1]. Thus, for convolutional layers the
Alpha-Beta rule with α = 1, β = 0, and for fully connected layer the Epsilon
rule with ϵ = 1 ∗ 10−6 was applied. To allow a specific interpretation of the
inputs, the PNs were trained from scratch on only one gait features instead of
all 14 for 500 epochs and were retrained for 150 epochs.

3 Results

In all approaches (1S), (1S+2Ŝ), and (3S), we investigate whether transfer learn-
ing from an existing dataset of restricted walking trials (NW) to new patients
based on a small set of recorded gait samples with 3 sensors in the clinics (OW)
is beneficial to generalize to unseen real-life data (DW). First, the quality of the
generated foot data is shown, then the predictions of the different gait features
are compared, and finally a revealed mechanism for stride length is described as
an example for LRP in gait analysis.

3.1 Generation of foot trajectories

Figure 3 visualizes the predictions of the networks that were trained on NW or
OW data exclusively and those that were trained on NW and retrained with
OW data. All networks were tested on the DW dataset. The foot data channels
are estimated correctly on average, but the variance shows clear deviations: All
trained networks overestimate the data of patients (s. fig. 3, top). Especially,
the variance in the predicted x-axis of the accelerometer indicates huge noise,
that is not present in the original data. This is primarily during stance phase
(0.3 s - 0.75 s) where one foot is on the ground and thus not accelerating at all.
Furthermore, the noise of the accelerometer is lower with HC compared to the
patient group. Retraining on OW lower the standard deviations of the predicted
DW curves and better fit the distribution of the data for HCs and PATs. The
network trained on the OW data only shows the strongest fluctuations of all three
networks for PATs. Since the network trained with the NW dataset and retrained
with the OW dataset has the lowest error and makes the best predictions of the
three networks on everyday data, this is further used to predict everyday foot
data for the 1S+2Ŝ approach. The network trained on the OW data only shows
the strongest fluctuations of all three networks for PATs. Since the network
trained with the NW dataset and retrained with the OW dataset has the lowest
error and makes the best predictions of the three networks on everyday data,
this is further used to predict everyday foot data for the 1S+2Ŝ approach.
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Fig. 3: Mean and standard deviation of original DW foot data (blue) and FN
predictions (green) trained on NW data, and retrained on OW, and trained on
OW exclusively for patients (top) and healthy controls (bottom).

3.2 Prediction of gait features

First results deliver low (<5%) relative errors for stride duration, gait speed and
stride length, using hip raw data only after retraining with OW-data (s. tab. 1).
For these gait features, using the complete set of sensor data shows similar re-
sults (e.g. stride duration rel. err: 0.72% (3S), 1.19% (1S)). All gait features
benefit from an additional retraining on 1% of everyday data (e.g. stride length
rel. err: 4.37% (1S, OW), 2.35% (1S, DW1%)).
The foot angles at TO and HS show small relative errors of 2.47% and 5.17% in
the three-sensor approach, but can also be captured with medium deviations by
the one-sensor approach (6.61% and 10.22% resp.). The relative error decreases
to 3.16% resp. 6.90% when an additional 1% of the everyday data is used for
retraining. For other foot related gait features like lateral deviation or toe-out
angle, an accurate estimation seems to be difficult with all our approaches.
Predicting sway of the upper body reveals moderate relative errors (∼10%) in
both conditions (e.g. coronal sway rel. err.: 8.81% (1S), 11.1% (3S), transverse
sway rel. err.: 10.02% (1S), 8.96% (3S)).
The estimation of almost all gait features is improved by generating foot trajec-
tories from hip trajectories. Here, for example, the rel. error of the stride length
decreases from 4.37% (1S) to 4.05%. Thus, using synthetic foot data can achieve
mild improvements for gait feature predictions.
In terms of mean error and standard deviation per subject, it can be seen that
for the stride length predominantly the outliers of the base nets lie closer to
the straight lines after retraining and thus correspond better to the ground
truth (s. fig. 4). In general, subjects-wise stride length standard deviations lie
mostly below the ground truth, so that the nets show a lower standard deviation
per subject in their estimates.



8 J. Seemann

Table 1: Relative errors of gait feature predictions for the sensor set-ups after
retraining on OW and 1% of DW data set and tested on DW data set.

Rel. error real feet (3S) pred. feet(1S+2Ŝ) hip(1S)
after retraining OW DW1% OW DW1% OW DW1%

stride duration [s] 0.72% 0.49% 1.39% 0.95% 1.19% 0.93%
gait speed [m/s] 2.53% 1.41% 3.82% 2.25% 4.13% 2.36%
stride length [m] 2.56% 1.49% 4.05% 2.18% 4.37% 2.35%
double support 3.26% 2.18% 7.70% 4.14% 7.74% 4.15 %
circumduction [m] 17.31% 14.24% 35.81% 28.70% 38.23% 28.77%
foot elevation [m] 32.00% 22.83% 39.57% 30.20% 41.88% 31.91%
lateral dev. [m] 49.82% 37.19% 74.85% 64.39% 72.47% 62.49%

pitch at TO [°] 2.47% 1.52% 6.25% 3.16% 6.61% 3.16 %
pitch at HS [°] 5.17% 3.50% 10.64% 7.00% 10.22% 6.90%
pitch at MS [°] 10.57% 8.17% 21.87% 15.53% 22.98% 15.18%
toe out[°] 34.77% 23.16% 84.41% 52.43% 85.43% 52.03%

transverse ROM [°] 8.96% 6.82 % 11.35% 7.61% 10.20% 7.11%
coronal ROM [°] 11.11% 6.73 % 9.88% 5.70% 8.81% 5.80%
sagittal ROM [°] 26.31% 19.21% 26.46% 18.06% 26.05% 18.86%

Fig. 4: Means (top) and standard deviations (bottom) of the 1S network and
corresponding ground truth labels per subject for the stride length, comparing
the base (left), OW-retrained (middle) and DW1%-retrained (right) networks.
Blue: HCs, Red: PATs.
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However, foot-specific gait parameters not in gait direction such as lateral devi-
ation, circumduction, toe out and foot elevation are inaccurately predicted with
large relative errors in the single sensor condition (> 30%), but also while using
all of the three sensors (> 15%) (s. tab. 1).

3.3 Explainability

For stride length prediction in 3S, strongly positively relevant areas of the x and
z axis of the accelerometer are specifically located in the swing phase (starting
at 60% of the gait cycle) of the referenced foot (s. fig. 5, top). The gyroscope
does not appear to be used in any of the three sensor locations for stride length
prediction. The magnetometer of the hip in x and z direction shows slight rele-
vances during the whole swing phase.
If only the hip sensor (1S) is available, the positive relevances scatter in the
whole range of the gait cycle, mainly occurring in the x and z channel of the
accelerometer and magnetometer (s. fig. 5, bottom). The importance of the mag-
netometer is overall higher compared to 3S. The gyroscope is not relevant for
stride length prediction in the 1S approach.

NI/AS – RI/NL – RI/NL: Stride Length 9_8_339, 
Label: 1.31, NI/AS: 1.32, RI/AS: 1.32, RI/NL: 1.37
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Fig. 5: Example stride with high (green), low (yellow) and slightly negative (or-
ange) relevance scores predicting stride length with true label 1.31 m, and pre-
dicted stride length 1.32 m (3S, top) and 1.38 (1S, bottom), respectively. Rows:
LRP extracted relevance scrores for IMU-sensor inputs with a length of 170 of
the triaxial accelerometers (Acc), gyroscopes (Gyro) and magnetometers (Mag)
of the OPAL-sensors placed on the left foot (LF), hip and right foot (RF).
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4 Discussion

Our key finding is that 1D-CNN based one-sensor systems are able to predict
treatment responsive gait features with low relative error (< 5%) in everyday
life. Furthermore, LRP indicates that gait features are traceably represented in
the hip when foot sensors are not available, facilitating assessment by clinicians.
For the analysis of everyday data, retraining with data previously recorded in
the clinics is beneficial: key gait features responsive to ataxia, such as stride
length, are predicted accurately with just one sensor on the hip. Since cerebellar
ataxia is characterized by increased variability of gaits features, the variance of
predicted values is highly relevant. Using retraining on individuals, both PN and
FN networks are able to recognize individual peculiarities in real-life gait. This
might be beneficial as different patients show individual gait patterns or com-
pensation strategies. Additional retraining with a small portion of the everyday
data was shown to be further beneficial. However, since this would require wear-
ing three sensors to generate the ground truth in everyday life, this approach is
not applicable in the clinics.
Unsurprisingly, accurate prediction of some foot-related features like the toe-out
angle requires feet sensors due to insufficient representation of the degrees of
freedom in the hip, knee and ankle joints, in the single hip sensor. Gait features
such as lateral deviation that relate to changes between two strides are inade-
quately represented by single stride data. Implementing LSTMs or transformer
models, future approaches should incorporate longer inputs with additional con-
textual information to improve the quality of predictions for lateral deviation.
Before gait parameters are estimated in 1S+2Ŝ, foot data is generated first,
which show qualitative differences from the raw data. Before retraining the foot
sensor predictions include significant noise on the x-axis of the ACC, in par-
ticular in the patient group. A possible reason for this could be highly altered
gait patterns in the patient group with varying severities of ataxia. Improving
the FN network can lead to using already existing three sensor based analysis
pipelines with original hip data and synthetic foot data.
Analysing the 3S approach, LRP reveals acceleration in the direction of gait as
highly relevant, which is initially read on the z axis due to the plantar flexion
during early swing phase and primarily on the x axis during mid swing. This is an
intuitively correct approach, because the stride length is defined as the distance
covered by the referenced foot during the swing phase. The learnt mechanism of
the 1S network to predict the stride length from the hip acceleration in vertical
direction is consistent with conventional approaches using inverted pendulum
models [7]. Biomechanically, larger strides tend to cause a larger displacement of
the hip in the vertical direction during the gait cycle. In this respect, traceable
areas of input are of great relevance in both the 1S and 3S approach.
For upcoming clinical trials, predicted gait features should be consistent with
effect sizes from validated three sensor systems and surpass state of the art
methods based on one sensor only, allowing everyday measurement of a larger
number of patients for future therapy studies.
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5 Conclusion

1D-CNN-assisted one-sensor systems are able to predict gait features from one
hip raw data with low relative errors. For specific gait features, they do exhibit
expected qualitative deficiencies compared to the use of three sensors, but these
can be reduced by retraining on the individual patients. Explainability methods
like LRP reveal meaningful mechanisms behind three- and one-sensor based gait
feature predictions for clinicians and therapists. This work shows how estab-
lished three-sensor based gait features from the laboratory can be transferred
to everyday life by one sensor only, maximizing the clinical feasibility for future
clinical studies.
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3. Buckley, E., Mazzà, C., McNeill, A.: A systematic review of the gait characteristics
associated with cerebellar ataxia. In Gait Posture 60, 154–163 (2018)

4. Cuturi, M., Blondel, M.: Soft-dtw: a differentiable loss function for time-series. In:
International Conference on Machine Learning (2017)

5. Czech, M., Demanuele, C., Erb, M.K., Ramos, V., Zhang, H., Ho, B., Patel, S.: The
impact of reducing the number of wearable devices on measuring gait in parkinson
disease: Noninterventional exploratory study. JMIR Rehabil Assist Technol 7(2),
e17986 (Oct 2020)

6. Ghanekar, S.D., Kuo, S.H., Staffetti, J.S., Zesiewicz, T.A.: Current and emerging
treatment modalities for spinocerebellar ataxias. Expert Review of Neurotherapeu-
tics 22(2), 101–114 (2022), pMID: 35081319

7. Goyal, P., Ribeiro, V.J., Saran, H., Kumar, A.: Strap-down pedestrian dead-
reckoning system. In: International Conference on Indoor Positioning and Indoor
Navigation (IPIN), 2011. pp. 1–7. IEEE / Institute of Electrical and Electronics
Engineers Incorporated (2011)

8. Hannink, J., Kautz, T., Pasluosta, C.F., Gasmann, K.G., Klucken, J., Eskofier,
B.M.: Sensor-based gait parameter extraction with deep convolutional neural net-
works. IEEE Journal of Biomedical and Health Informatics 21(1), 85–93 (jan 2017)



12 J. Seemann

9. He, K., Zhang, X., Ren, S., Sun, J.: Delving deep into rectifiers: Surpassing human-
level performance on imagenet classification. In: 2015 IEEE International Confer-
ence on Computer Vision (ICCV). pp. 1026–1034 (2015)

10. Hossain, M.S.B., Dranetz, J., Choi, H., Guo, Z.: Deepbbwae-net: A cnn-rnn based
deep superlearner for estimating lower extremity sagittal plane joint kinematics
using shoe-mounted imu sensors in daily living. IEEE journal of biomedical and
health informatics 26(8), 3906–3917 (2022)

11. Ilg, W., Müller, B., Faber, J., van Gaalen, J., Hengel, H., Vogt, I.R., Hennes, G.,
van de Warrenburg, B., Klockgether, T., Schöls, L., Synofzik, M., the ESMI Con-
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